Utilizing Content to Enhance a Usage-Based Method for Web Recommendation Based on Q-Learning
نویسنده
چکیده
The problem of information overload on the Internet has received a great deal of attention in the recent years. Recommender Systems have been introduced as one solution to this problem. These systems aim at directing the user toward the items that best meet her needs and interests. Recent studies have indicated the effectiveness of incorporating domain knowledge in improving the quality of recommendations. In this paper we exploit this approach to enhance a reinforcement learning framework, primarily devised for web recommendations based on web usage data. A hybrid, i.e. contentand usage-based, web recommendation method is proposed by incorporating web content information into a model of user behavior learned form usage data. Content information is utilized to find similarities between usage scenarios, i.e. users' seeking their information needs, and new recommendation strategies are proposed that are based on this enhanced model of user behavior. We evaluate our method under different settings and show how this method can overcome the shortcomings of the usage-based approach and improve the overall quality of recommendations.
منابع مشابه
Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems
One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...
متن کاملWeb Content Recommendation Methods Based on Reinforcement Learning
Information overload is no longer news; the explosive growth of the Internet has made this issue increasingly serious for Web users. Recommender systems aim at directing users through this information space, toward the resources that best meet their needs and interests. In this chapter we introduce our novel machine learning perspective toward the web recommendation problem, based on reinforcem...
متن کاملLink Recommendation Method Based on Web Content and Usage Mining
Hyperlink recommendation overcomes the problem of quick and easy access to information in web systems. A method that integrates web usage and content mining was proposed and examined in this paper. Potentially interesting documents are prompted to the user on the basis of usage patterns and conceptual spaces matched against the active user session. Automatic term selections and web usage distin...
متن کاملUsing WebQuest in Medical Education
Introduction: Today modern teaching and learning approaches in medical education have received considerable attention. This paper aims to introduce WebQuest as a new method of inquiry-based learning through the use of Internet. Also its application in medical sciences education in general, and especially nursing education is explained. Methods: To find articles related to the WebQuest topic, t...
متن کاملQoS-based Web Service Recommendation using Popular-dependent Collaborative Filtering
Since, most of the organizations present their services electronically, the number of functionally-equivalent web services is increasing as well as the number of users that employ those web services. Consequently, plenty of information is generated by the users and the web services that lead to the users be in trouble in finding their appropriate web services. Therefore, it is required to provi...
متن کامل